Assignment instructions:

Assignment submission (YOUR NAME): ______________________________________


library(tidyverse)
library(here)
library(janitor)
library(estimatr)  
library(performance)
library(jtools)
library(gt)
library(gtsummary)
library(MASS) ## NOTE: The `select()` function is masked. Use: `dplyr::select()` ##
library(interactions) 

DATA SOURCE:

Reed D. 2019. SBC LTER: Reef: Abundance, size and fishing effort for California Spiny Lobster (Panulirus interruptus), ongoing since 2012. Environmental Data Initiative. https://doi.org/10.6073/pasta/a593a675d644fdefb736750b291579a0. Dataset accessed 11/17/2019.


Introduction

You’re about to dive into some deep data collected from five reef sites in Santa Barbara County, all about the abundance of California spiny lobsters! 🦞 Data was gathered by divers annually from 2012 to 2018 across Naples, Mohawk, Isla Vista, Carpinteria, and Arroyo Quemado reefs.

Why lobsters? Well, this sample provides an opportunity to evaluate the impact of Marine Protected Areas (MPAs) established on January 1, 2012 (Reed, 2019). Of these five reefs, Naples, and Isla Vista are MPAs, while the other three are not protected (non-MPAs). Comparing lobster health between these protected and non-protected areas gives us the chance to study how commercial and recreational fishing might impact these ecosystems.

We will consider the MPA sites the treatment group and use regression methods to explore whether protecting these reefs really makes a difference compared to non-MPA sites (our control group). In this assignment, we’ll think deeply about which causal inference assumptions hold up under the research design and identify where they fall short.

Let’s break it down step by step and see what the data reveals! 📊


Step 1: Anticipating potential sources of selection bias

a. Do the control sites (Arroyo Quemado, Carpenteria, and Mohawk) provide a strong counterfactual for our treatment sites (Naples, Isla Vista)? Write a paragraph making a case for why this comparison is centris paribus or whether selection bias is likely (be specific!).


Step 2: Read & wrangle data

a. Read in the raw data. Name the data.frame (df) rawdata

b. Use the function clean_names() from the janitor package

# HINT: check for coding of missing values (`na = "-99999"`)

rawdata <- 

c. Create a new df named tidyata. Using the variable site (reef location) create a new variable reef as a factor and add the following labels in the order listed (i.e., re-order the levels):

"Arroyo Quemado", "Carpenteria", "Mohawk", "Isla Vista",  "Naples"
tidydata <- 

Create new df named spiny_counts

d. Create a new variable counts to allow for an analysis of lobster counts where the unit-level of observation is the total number of observed lobsters per site, year and transect.

e. Create a new variable mpa with levels MPA and non_MPA. For our regression analysis create a numerical variable treat where MPA sites are coded 1 and non_MPA sites are coded 0

#HINT(d): Use `group_by()` & `summarize()` to provide the total number of lobsters observed at each site-year-transect row-observation. 

#HINT(e): Use `case_when()` to create the 3 new variable columns

spiny_counts <- 

NOTE: This step is crucial to the analysis. Check with a friend or come to TA/instructor office hours to make sure the counts are coded correctly!


Step 3: Explore & visualize data

a. Take a look at the data! Get familiar with the data in each df format (tidydata, spiny_counts)

b. We will focus on the variables count, year, site, and treat(mpa) to model lobster abundance. Create the following 4 plots using a different method each time from the 6 options provided. Add a layer (geom) to each of the plots including informative descriptive statistics (you choose; e.g., mean, median, SD, quartiles, range). Make sure each plot dimension is clearly labeled (e.g., axes, groups).

Create plots displaying the distribution of lobster counts:

  1. grouped by reef site
  2. grouped by MPA status
  3. grouped by year

Create a plot of lobster size :

  1. You choose the grouping variable(s)!
# plot 1: ....

spiny_counts %>% 
ggplot()

c. Compare means of the outcome by treatment group. Using the tbl_summary() function from the package gt_summary

# USE: gt_summary::tbl_summary()

Step 4: OLS regression- building intuition

a. Start with a simple OLS estimator of lobster counts regressed on treatment. Use the function summ() from the jtools package to print the OLS output

b. Interpret the intercept & predictor coefficients in your own words. Use full sentences and write your interpretation of the regression results to be as clear as possible to a non-academic audience.

# NOTE: We will not evaluate/interpret model fit in this assignment (e.g., R-square)

m1_ols <- 

summ(m1_ols, model.fit = FALSE) 

c. Check the model assumptions using the check_model function from the performance package

d. Explain the results of the 4 diagnostic plots. Why are we getting this result?

check_model(m1_ols,  check = "qq" )
check_model(m1_ols, check = "normality")
check_model(m1_ols, check = "homogeneity")
check_model(m1_ols, check = "pp_check")

Step 5: Fitting GLMs

a. Estimate a Poisson regression model using the glm() function

b. Interpret the predictor coefficient in your own words. Use full sentences and write your interpretation of the results to be as clear as possible to a non-academic audience.

c. Explain the statistical concept of dispersion and overdispersion in the context of this model.

d. Compare results with previous model, explain change in the significance of the treatment effect

#HINT1: Incidence Ratio Rate (IRR): Exponentiation of beta returns coefficient which is interpreted as the 'percent change' for a one unit increase in the predictor 

#HINT2: For the second glm() argument `family` use the following specification option `family = poisson(link = "log")`

m2_pois <- 

e. Check the model assumptions. Explain results.

f. Conduct tests for over-dispersion & zero-inflation. Explain results.

check_model(m2_pois)
check_overdispersion(m2_pois)
check_zeroinflation(m2_pois)

g. Fit a negative binomial model using the function glm.nb() from the package MASS and check model diagnostics

h. In 1-2 sentences explain rationale for fitting this GLM model.

i. Interpret the treatment estimate result in your own words. Compare with results from the previous model.

# NOTE: The `glm.nb()` function does not require a `family` argument

m3_nb <- 
check_overdispersion(m3_nb)
check_zeroinflation(m3_nb)
check_predictions(m3_nb)
check_model(m3_nb)

Step 6: Compare models

a. Use the export_summ() function from the jtools package to look at the three regression models you fit side-by-side.

c. Write a short paragraph comparing the results. Is the treatment effect robust or stable across the model specifications.

export_summs(# ADD MODELS
             model.names = c("OLS","Poisson", "NB"),
             statistics = "none")

Step 7: Building intuition - fixed effects

a. Create new df with the year variable converted to a factor

b. Run the following negative binomial model using glm.nb()

c. Take a look at the regression output. Each coefficient provides a comparison or the difference in means for a specific sub-group in the data. Informally, describe the what the model has estimated at a conceptual level (NOTE: you do not have to interpret coefficients individually)

d. Explain why the main effect for treatment is negative? *Does this result make sense?

ff_counts <- spiny_counts %>% 
    mutate(year=as_factor(year))
    
m5_fixedeffs <- glm.nb(
    counts ~ 
        treat +
        year +
        treat*year,
    data = ff_counts)

summ(m5_fixedeffs, model.fit = FALSE)

e. Look at the model predictions: Use the interact_plot() function from package interactions to plot mean predictions by year and treatment status.

f. Re-evaluate your responses (c) and (b) above.

interact_plot(m5_fixedeffs, pred = year, modx = treat,
              outcome.scale = "link") # NOTE: y-axis on log-scale

# HINT: Change `outcome.scale` to "response" to convert y-axis scale to counts

g. Using ggplot() create a plot in same style as the previous interaction plot, but displaying the original scale of the outcome variable (lobster counts). This type of plot is commonly used to show how the treatment effect changes across discrete time points (i.e., panel data).

The plot should have… - year on the x-axis - counts on the y-axis - mpa as the grouping variable

# Hint 1: Group counts by `year` and `mpa` and calculate the `mean_count`
# Hint 2: Convert variable `year` to a factor

plot_counts <- 

# plot_counts %>% ggplot() ...

Step 8: Reconsider causal identification assumptions

  1. Discuss whether you think spillover effects are likely in this research context (see Glossary of terms; https://docs.google.com/document/d/1RIudsVcYhWGpqC-Uftk9UTz3PIq6stVyEpT44EPNgpE/edit?usp=sharing)

  2. Explain why spillover is an issue for the identification of causal effects

  3. How does spillover relate to impact in this research setting?

  4. Discuss the following causal inference assumptions in the context of the MPA treatment effect estimator. Evaluate if each of the assumption are reasonable:

    1. SUTVA: Stable Unit Treatment Value assumption
    2. Excludability assumption

EXTRA CREDIT

Use the recent lobster abundance data with observations collected up until 2024 (lobster_sbchannel_24.csv) to run an analysis evaluating the effect of MPA status on lobster counts using the same focal variables.

  1. Create a new script for the analysis on the updated data
  2. Run at least 3 regression models & assess model diagnostics
  3. Compare and contrast results with the analysis from the 2012-2018 data sample (~ 2 paragraphs)